
 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 12

Design and Implementation of Booth Multiplier

using Approximate Adders

Shital Keskar
1
, Prof T. S. Mote

2

ENTC Department, Pune University, Pune, India1,2,

Abstract: Low power is an imperative requirement for portable multimedia devices employing various signal

processing algorithms and architectures. In most multimedia applications, human beings can gather useful information

from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous

research in this context exploits error resiliency primarily through voltage overscaling, utilizing algorithmic and

architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction at the
transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate

this concept by proposing various imprecise or approximate full adder cells with reduced complexity at the transistor

level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched

capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling.

Keyword: Approximate computing, low power, mirror adder. Booths multiplier, Wallace tree multiplier

I. INTRODUCTION

Digital signal processing (DSP) blocks form the backbone

of various multimedia applications used in portable

devices. Most of these DSP blocks implement image and

video processing algorithms, where the ultimate output is
either an image or a video for human consumption.

Human beings have limited perceptual abilities when

interpreting an image or a video. This allows the outputs

of these algorithms to be numerically approximate rather

than accurate. This relaxation on numerical exactness

provides some freedom to carry out imprecise or

approximate computation. We can use this freedom to

come up with low-power designs at different levels of

design abstraction, namely, logic, architecture, and

algorithm.

The paradigm of approximate computing is specific to
select hardware implementations of DSP blocks. It is

shown in [1] that an embedded reduced instruction set

computing processor consumes 70% of the energy in

supplying data and instructions, and 6% of the energy

while performing arithmetic only. Therefore, using

approximate arithmetic in such a scenario will not provide

much energy benefit when considering the complete

processor. Programmable processors are designed for

general-purpose applications with no application-specific

specialization.

Therefore, there may not be many applications that will be

able to tolerate errors due to approximate computing. This

also makes general-purpose processors not suited for using

approximate building blocks. This issue has already been

discussed in [13]. Therefore, in this paper, we consider
application-specific integrated circuit implementations of

error-resilient applications like image and video

compression.

We target the most computationally intensive blocks in

these applications and build them using approximate

hardware to show substantial improvements in power
consumption with little loss in output quality.

Few works that focus on low-power design through

approximate computing at the algorithm and architecture

levels include algorithmic noise tolerance (ANT) [3]–[6],

significance driven computation (SDC) [7]–[9], and
nonuniform voltage overscaling (VOS) [10]. All these

techniques are based on the central concept of VOS,

coupled with additional circuitry for correcting or limiting

the resulting errors. In [11], a fast but “inaccurate” adder is

proposed. It is based on the idea that on average, the

length of the longest sequence of propagate signals is

approximately log n, where n is the bitwidth of the two

integers to be added. An error-tolerant adder is proposed

in [12] that operates by splitting the input operands into

accurate and inaccurate parts. However, neither of these

techniques target logic complexity reduction. Power-

efficient multiplier architecture is proposed in [13] that
uses a 2 × 2 inaccurate multiplier block resulting from

Karnaugh map simplification. This paper considers logic

complexity reduction using Karnaugh maps. Shin and

Gupta [14] and Phillips et al. [15] also proposed logic

complexity reduction by Karnaugh map simplification.

Other works that focus on logic complexity reduction at

the gate level are [16]–[19]. Other approaches use

complexity reduction at the algorithm level to meet real-

time energy constraints [20], [21].

Previous works on logic complexity reduction have
focused on algorithm, logic, and gate levels. We propose

logic complexity reduction at the transistor level. We

apply this to addition at the bit level by simplifying the

mirror adder (MA) circuit. We develop imprecise but

simplified arithmetic units, which provide an extra layer of

power savings over conventional low-power design

techniques. This is attributed to the reduced logic

complexity of the proposed approximate arithmetic units.

Note that the approximate arithmetic units not only have a

reduced number of transistors, but care is taken to ensure

that the internal node capacitances are greatly reduced.
Complexity reduction leads to power reduction in two

 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 13

different ways. First, an inherent reduction in switched

capacitance and leakage results from having smaller
hardware. Second, complexity reduction frequently leads

to shorter critical paths, facilitating voltage reduction

without any timing-induced errors. In summary, our work

significantly differs from other works (SDC, ANT, and

nonuniform VOS) since we adopt a different approach for

exploiting error resiliency. Our aim is to target low-power

design using simplified and approximate logic

implementations. Since DSP blocks mainly consist of

adders and multipliers (which are, in turn, built using

adders), we propose several approximate adders, which

can be used effectively in such blocks.

A preliminary version of our work appeared in [22]. We

extend our paper in [22] by providing two more simplified

versions of the MA. Furthermore, we propose a measure

of the “quality” of a DSP block that uses approximate

adders. We also propose a methodology that can be used

to harness maximum power savings using approximate

adders, subject to a specific quality constraint. Our

contributions in this paper can be summarized as follows.

1) We propose logic complexity reduction at the

transistor level as an alternative approach to
approximate computing for DSP applications.

2) We show how to simplify the logic complexity of a

conventional MA cell by reducing the number of

transistors and internal node capacitances. Keeping

this aim in mind, we propose five different simplified

versions of the MA, ensuring minimal errors in the

full adder (FA) truth table.

3) We utilize the simplified versions of the FA cell to

propose several imprecise or approximate multi-bit

adders that can be used as building blocks of DSP
systems. To maintain a reasonable output quality,

approximate FA cells used only in the least significant

bits (LSBs). We particularly focus on adder structures

that use FA cells as their basic building blocks.

4) VOS is a very popular technique to get large

improvements in power consumption. However, VOS

will lead to delay failures in the most significant bits

(MSBs). This might lead to large errors in

corresponding outputs and severely mess up the

output quality of the application. We use approximate

FA cells only in the LSBs, while the MSBs use

accurate FA cells. Therefore, at iso frequency, the
errors introduced by VOS will be much higher, when

compared to proposed approximate adders. Since

truncation is a well-known technique to facilitate

voltage scaling,. In general, our approach may be

applied to any arithmetic circuit built with FAs.

II. APPROXIMATE ADDERS

In this section, we discuss different methodologies for

designing approximate adders. Since the MA [23] is one

of the widely used economical implementations of an FA

[24], we use it as our basis for proposing different

approximations of an FA cell.

Approximation Strategies for the MA

In this section, we explain step-by-step procedures for

coming up with various approximate MA cells with fewer

transistors. Removal of some series connected transistors

will facilitate faster charging/discharging of node

capacitances. Moreover, complexity reduction by removal

of transistors also aids in reducing the αC term (switched

capacitance) in the dynamic power expression Pdynamic =

αCV2 DDf , whereα is the switching activity or average

number of switching transitions per unit time and C is the

load capacitance being charged/discharged. This directly
results in lower power dissipation. Area reduction is also

achieved by this process. Now, let us discuss the

conventional MA implementation followed by the

proposed approximations used economical

implementations of an FA [24], we use it as our basis for

proposing different approximations of an FA cell.

Fig. 1. Conventional MA.

Fig. 2. MA approximation 1.

Fig. 3. MA approximation 2.

 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 14

Fig. 4. MA approximation 3.

Fig. 5. MA approximation 4.

1) Conventional MA: Fig. 1 shows the transistor-level
schematic of a conventional MA [23], which is a

popular way of implementing an FA. It consists of a

total of 24 transistors. Since this implementation is

not based on complementary CMOS logic, it provides

a good opportunity to design an approximate version

with removal of selected transistors.

2) Approximation 1: In order to get an approximate MA

with fewer transistors, we start to remove transistors

from the conventional schematic one by one.

However, we cannot do this in an arbitrary fashion.

We need to make sure that any input combination of

A,B and Cin does not result in short circuits or open

circuits in the simplified schematic. Another
important criterion is that the resulting simplification

should introduce minimal errors in the FA truth table.

A judicious selection of transistors to be removed

(ensuring no open or short circuits) results in a

schematic shown in Fig. 2, which we call

approximation 1. Clearly, this schematic has eight

fewer transistors compared to the conventional MA

schematic. In this case, there is one error in Cout and

two errors in Sum, as shown in Table I. A tick mark

denotes a match with the corresponding accurate

output and a cross denotes an error.

3) Approximation 2: The truth table of an FA shows that

Sum= Cout 1 for six out of eight cases, except for the
input combinations A = 0,B = 0,Cin = 0 and A = 1,B

= 1,Cin = 1. Now, in the conventional MA, Cout is

computed in the first stage. Thus, an easy way to get a

simplified schematic is to set Sum= Cout. However,

we introduce a buffer stage after Cout (see Fig. 3) to

implement the same functionality.

The reason for this can be explained as follows. If we

set Sum= Cout as it is in the conventional MA, the

total capacitance at the Sum node would be a

combination of four source–drain diffusion and two

gate capacitances. This is a considerable increase

compared to the conventional case or approximation
1. Such a design would lead to a delay penalty in

cases where two or more multi-bit approximate adders

are connected in series, which is very common in DSP

applications. Fig. 3 shows the schematic obtained

using the above approach. We call this approximation

 2. Here, Sum has only two errors, while Cout is

correct for all cases, as shown in Table I.

Table 1: Truth Table for Conventional Adder and Approximations 1 to 4

 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 15

Fig 6. Layouts of Conventional MA and Approximation Cell

Table 3 Experimental Results for one bit adder

Power Consumption(

 w)

Layout Area(

 m2) Delay(ps)

Conventional MA 148 54*12 15

Approximation 1 72.682 36*11 10

Approximation 2 9.098 32*12 20

Approximation 3 8.782 26*12 21

Approximation 4 7.394 25*11 15

Table 4 Experimental Results for eight bit booths multiplier

Power(

mw)
Delay(ps)

No of Adders

used in CLA

Total No of

Transistors used in

CLA

Layout Area for

CLA (m2

)

Conventional MA 585.4 551.1 15 360 180

Approximation1 584.9 551.08 15 248 124

Approximation2 601.7 551.09 15 218 109

Approximation3 592.9 551.27 15 176 88

Approximation4 582.6 551.09 15 178 89

Table 2 Choosing Approximation 5

4) Approximation 3: Further simplification can be

obtained by combining approximations 1 and 2. Note

that this introduces one error in Cout and three errors
in Sum, as shown in Table I. The corresponding

simplified schematic is shown in Fig. 4.

5) Approximation 4: A close observation of the FA truth

table shows that Cout = A for six out of eight cases.

Similarly, Cout = B for six out of eight cases. Since A

and B are interchangeable, fourth approximation

where we just use an inverter with input A to calculate

Cout and Sum is calculated similar to approximation

1. This introduces two errors in Cout and three errors

in as shown in Table I. The corresponding simplified

schematic is shown in Fig. 5. In all we consider Cout

= A. Thus, we propose a Sum, using an inverter with

Cout as input.

6) Approximation 5: In approximation 4, we find that

there are three errors in Sum. We extend this
approximation by allowing one more error, i.e., four

errors in Sum. We use the approximation Cout = A, as

in approximation 4. If we want to make Sum

independent of Cin, we have two choices, Sum= A

and Sum= B. Thus, we have two alternatives for

approximation 5, namely, Sum= A, Cout = A and

Sum= B, Cout = A, which are shown in Table 2. The

table shows which entries match with and differ from

the corresponding accurate outputs (shown by tick

marks and crosses). If we observe choice 1, we find

that both Sum and Cout match with accurate outputs

in only two out of eight cases. In choice 2, Sum and
Cout match with accurate outputs in four out of eight

cases. Therefore, to minimize errors both in Sum and

Cout, we go for choice 2 as approximation 5. Our

main thrust here is to ensure that for a particular input

combination (A,B and Cin), ensuring correctness in

Sum also makes Cout correct. Now consider the

addition of two 20-b integers a[19 : 0] and b[19 : 0]

using an RCA. Suppose we use approximate FAs for

7 LSBs. Then, Cin[7] = Cout[6]. Note that Cout[6] is

approximate. Applying this approximation to our

present example, we find that carry propagation from
bit 0 to bit 6 is entirely eliminated. In addition, the

 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 16

circuitry needed to calculate Cout[0] to Cout[5] is also

saved. To limit the output capacitance at Sum and
Cout nodes, we implement approximation 5: Sum= B,

Cout = A using buffers.

Layouts of conventional MA and different approximations

in IBM 90-nm technology are shown in Fig. 6. Layout

area the conventional MA and different approximations

are compared in Table III. Approximation 5 uses only

buffers. The layout area of a single buffer is 6.77 μm2.

7) Boots multiplier: Multiplication is a most commonly

used operation in many computing systems. Intact

multiplication is nothing but addition since,
multiplicand adds to itself multiplier number of times

gives the multiplication value between multiplier and

multiplicand. But considering the fact that this kind of

implementation really takes huge hardware resources

and the circuit operates at utterly low speed. If we

observe closely multiplication operation involves two

steps one is producing partial products and adding

these partial products. Thus, the speed of a multiplier

hardly depends on how fast generate the partial

products and how fast we can add them together. If

the number of partial products to be generated is of
less than it is indirectly means that we have achieved

the speed in generating partial products. To speed up

the addition among the partial products we need fast

adder architectures. The high speed Booth multiplier

is used for digital signal processing (DSP)

applications such as for multimedia and

communication systems. We designed and

implemented a multiplier unit that can perform

multiplication operation on both positive and negative

for signed numbers.

Fig 6.Chip Architecture

Algorithm: The architecture consists of five parts: two’s

complement Generator, Booth Encoder, Partial Product,
Wallace tree and Carry Look-ahead Adder. In

implementation of booths algorithm there are two operand

multiplier and multiplicand.

8)Wallace Tree Multiplier: To improving the speed of the

parallel multiplier Wallace multiplier is used. Wallace

introduced a very important iterative realization of parallel

multiplier. Parallel multipliers can reduce the number of

partial product rows to be added by half, thus reducing the

size and enhance the speed of the tree. This advantage

becomes more pronounced for multipliers of bigger than

16 bits. In Wallace tree architecture, all the bits of all of

the partial products in each column are added together by
a set of counters in parallel without propagating any

carries. Another set of counters then reduces this new

matrix and so on, until a two-row matrix is generated. The

most common counter used is the 3:2 counters which is a

Full Adder. The final results are added using usually carry

look ahead adder. A block diagram of 4 bit Wallace Tree

multiplier is shown in below. As seen from the block

diagram partial products are added in Wallace tree block.

The result of these additions is the final product bits and

sum and carry bits which are added in the final carry look

ahead adder.

Power consumption and booths multiplication output of:

1. Conventional MA :

2. Approximation1:

3.Approximation 2:

4. Approximation 3:

 ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 4, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3403 17

5. Approximation 4:

CONCLUSION

In this paper, we proposed several imprecise or

approximate adders that can be effectively utilized to trade

off power and quality for error-resilient DSP systems. Our

approach aimed to simplify the complexity of a

conventional MA cell by reducing the number of

transistors and also the load capacitances. When the errors

introduced by these approximations were reflected at a
high level in a typical DSP algorithm, the impact on output

quality was very little. Note that our approach differed

from previous approaches where errors were introduced

due to VOS. A decrease in the number of series connected

transistors helped in reducing the effective switched

capacitance and achieving voltage scaling. We present a 8-

bit×8-bit multiplier capable of carrying signed operations

on positive and negative operand. The proposed

approximations are used for multiplier design and

optimized in terms of delay, power consumption and area.

REFERENCES
[1] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V.

Parikh,J. Park, and D. Sheffield, “Efficient embedded computing,”

Computer,vol. 41, no. 7, pp. 27–32, Jul. 2008.

[2] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for

power with an underdesigned multiplier architecture,” in Proc. 24th

IEEE Int.Conf. VLSI Design, Jan. 2011, pp. 346–351.

[3] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via

algorithmic noise-tolerance,” in Proc. IEEE/ACM Int. Symp. Low

Power Electron. Design, Aug. 1999, pp. 30–35.

[4] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,”

IEEE Trans. Very Large Scale Integr. Syst., vol. 9, no. 6, pp. 813–

823, Jun.2001.

[5] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital

signal processing via reduced precision redundancy,” IEEE Trans.

Very Large Scale Integr. Syst., vol. 12, no. 5, pp. 497–510, May

2004.

[6] G. Varatkar and N. Shanbhag, “Energy-efficient motion estimation

using error-tolerance,” in Proc. IEEE/ACM Int. Symp. Low Power

Electron.Design, Oct. 2006, pp. 113–118.

[7] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven

computation: A voltage-scalable, variation-aware, quality-tuning

motion estimator,” in Proc. IEEE/ACM Int. Symp. Low Power

Electron. Design, Aug. 2009, pp. 195–200.

[8] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation

tolerant low power DCT architecture,” in Proc. Design, Automat.

Test Eur., 2007, pp. 1–6.

[9] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level DSP

synthesis using voltage overscaling, unequal error protection and

adaptive quality tuning,” in Proc. IEEE Workshop Signal

Processing Systems, Oct. 2009, pp. 133–138.

[10] L. N. Chakrapani, K. K. Muntimadugu, L. Avinash, J. George, and

K. V. Palem, “Highly energy and performance efficient embedded

computing through approximately correct arithmetic: A

mathematical foundation and preliminary experimental validation,”

in Proc. CASES, 2008, pp. 187–196.

[11] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative

addition: A new paradigm for arithmetic circuit design,” in Proc.

Design, Automat. Test Eur., 2008, pp. 1250–1255.

[12] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power

highspeed adder for error-tolerant application,” in Proc. IEEE Int.

Symp. Integr. Circuits, Dec. 2009, pp. 69–72.

[13] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for

power in a multiplier architecture,” J. Low Power Electron., vol. 7,

no. 4, pp. 490–501, 2011.

[14] D. Shin and S. K. Gupta, “Approximate logic synthesis for error

tolerant applications,” in Proc. Design, Automat. Test Eur., 2010,

pp. 957–960.

[15] B. J. Phillips, D. R. Kelly, and B. W. Ng, “Estimating adders for a

low density parity check decoder,” Proc. SPIE, vol. 6313, p.

631302, Aug. 2006.

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-

inspired imprecise computational blocks for efficient VLSI

implementation of soft-computing applications,” IEEE Trans.

Circuits Syst. Part I, vol. 57, no. 4, pp. 850–862, Apr. 2010.

[17] D. Shin and S. K. Gupta, “A re-design technique for datapath

modules in error tolerant applications,” in Proc. 17th Asian Test

Symp., 2008, pp. 431–437.

[18] D. Kelly and B. Phillips, “Arithmetic data value speculation,” in

Proc. Asia-Pacific Comput. Syst. Architect. Conf., 2005, pp. 353–

366.

[19] S.-L. Lu, “Speeding up processing with approximation circuits,”

Computer, vol. 37, no. 3, pp. 67–73, Mar. 2004.

[20] Y. V. Ivanov and C. J. Bleakley, “Real-time h.264 video encoding

in software with fast mode decision and dynamic complexity

control,” ACM Trans. Multimedia Comput. Commun. Applicat., vol.

6, pp. 5:1–5:21, Feb. 2010.

[21] M. Shafique, L. Bauer, and J. Henkel, “enBudget: A run-time

adaptive predictive energy-budgeting scheme for energy-aware

motion estimation in H.264/MPEG-4 AVC video encoder,” in Proc.

Design, Automat. Test Eur., Mar. 2010, pp. 1725–1730.

[22] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,

“IMPACT: Imprecise adders for low-power approximate

computing,” in Proc. IEEE/ACM Int. Symp. Low-Power Electron.

Design, Aug. 2011, pp. 409–414.

[23] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective.

Upper Saddle River, NJ: Prentice-Hall, 1996.

[24] [24] E. Lyons, V. Ganti, R. Goldman, V. Melikyan, and H.

Mahmoodi, “Full-custom design project for digital VLSI and IC

design courses using synopsys generic 90nm CMOS library,” in

Proc. IEEE Int. Conf. Microelectron. Syst. Edu., Jul. 2009, pp. 45–

48.

	CONCLUSION
	REFERENCES

