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Abstract: Low power is an imperative requirement for portable multimedia devices employing various signal 

processing algorithms and architectures. In most multimedia applications, human beings can gather useful information 

from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous 

research in this context exploits error resiliency primarily through voltage overscaling, utilizing algorithmic and 

architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction at the 
transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate 

this concept by proposing various imprecise or approximate full adder cells with reduced complexity at the transistor 

level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched 

capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling.  
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I. INTRODUCTION 

Digital signal processing (DSP) blocks form the backbone 

of various multimedia applications used in portable 

devices. Most of these DSP blocks implement image and 

video processing algorithms, where the ultimate output is 
either an image or a video for human consumption. 

Human beings have limited perceptual abilities when 

interpreting an image or a video. This allows the outputs 

of these algorithms to be numerically approximate rather 

than accurate. This relaxation on numerical exactness 

provides some freedom to carry out imprecise or 

approximate computation. We can use this freedom to 

come up with low-power designs at different levels of 

design abstraction, namely, logic, architecture, and 

algorithm. 

 

The paradigm of approximate computing is specific to 
select hardware implementations of DSP blocks. It is 

shown in [1] that an embedded reduced instruction set 

computing processor consumes 70% of the energy in 

supplying data and instructions, and 6% of the energy 

while performing arithmetic only. Therefore, using 

approximate arithmetic in such a scenario will not provide 

much energy benefit when considering the complete 

processor. Programmable processors are designed for 

general-purpose applications with no application-specific 

specialization. 
 

Therefore, there may not be many applications that will be 

able to tolerate errors due to approximate computing. This 

also makes general-purpose processors not suited for using 

approximate building blocks. This issue has already been 

discussed in [13]. Therefore, in this paper, we consider 
application-specific integrated circuit implementations of 

error-resilient applications like image and video 

compression.  
 

We target the most computationally intensive blocks in 

these applications and build them using approximate 

hardware to show substantial improvements in power 
consumption with little loss in output quality. 

 

Few works that focus on low-power design through 

approximate computing at the algorithm and architecture 

levels include algorithmic noise tolerance (ANT) [3]–[6], 

significance driven computation (SDC) [7]–[9], and 
nonuniform voltage overscaling (VOS) [10]. All these 

techniques are based on the central concept of VOS, 

coupled with additional circuitry for correcting or limiting 

the resulting errors. In [11], a fast but “inaccurate” adder is 

proposed. It is based on the idea that on average, the 

length of the longest sequence of propagate signals is 

approximately log n, where n is the bitwidth of the two 

integers to be added. An error-tolerant adder is proposed 

in [12] that operates by splitting the input operands into 

accurate and inaccurate parts. However, neither of these 

techniques target logic complexity reduction. Power-

efficient multiplier architecture is proposed in [13] that 
uses a 2 × 2 inaccurate multiplier block resulting from 

Karnaugh map simplification. This paper considers logic 

complexity reduction using Karnaugh maps. Shin and 

Gupta [14] and Phillips et al. [15] also proposed logic 

complexity reduction by Karnaugh map simplification. 

Other works that focus on logic complexity reduction at 

the gate level are [16]–[19]. Other approaches use 

complexity reduction at the algorithm level to meet real-

time energy constraints [20], [21]. 

 

Previous works on logic complexity reduction have 
focused on algorithm, logic, and gate levels. We propose 

logic complexity reduction at the transistor level. We 

apply this to addition at the bit level by simplifying the 

mirror adder (MA) circuit. We develop imprecise but 

simplified arithmetic units, which provide an extra layer of 

power savings over conventional low-power design 

techniques. This is attributed to the reduced logic 

complexity of the proposed approximate arithmetic units. 

Note that the approximate arithmetic units not only have a 

reduced number of transistors, but care is taken to ensure 

that the internal node capacitances are greatly reduced. 
Complexity reduction leads to power reduction in two 
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different ways. First, an inherent reduction in switched 

capacitance and leakage results from having smaller 
hardware. Second, complexity reduction frequently leads 

to shorter critical paths, facilitating voltage reduction 

without any timing-induced errors. In summary, our work 

significantly differs from other works (SDC, ANT, and 

nonuniform VOS) since we adopt a different approach for 

exploiting error resiliency. Our aim is to target low-power 

design using simplified and approximate logic 

implementations. Since DSP blocks mainly consist of 

adders and multipliers (which are, in turn, built using 

adders), we propose several approximate adders, which 

can be used effectively in such blocks.  

 
A preliminary version of our work appeared in [22]. We 

extend our paper in [22] by providing two more simplified 

versions of the MA. Furthermore, we propose a measure 

of the “quality” of a DSP block that uses approximate 

adders. We also propose a methodology that can be used 

to harness maximum power savings using approximate 

adders, subject to a specific quality constraint. Our 

contributions in this paper can be summarized as follows. 

  

1) We propose logic complexity reduction at the 

transistor level as an alternative approach to 
approximate  computing for DSP applications. 

 

2) We show how to simplify the logic complexity of a 

conventional MA cell by reducing the number of 

transistors and internal node capacitances. Keeping 

this aim in mind, we propose five different simplified 

versions of the MA, ensuring minimal errors in the 

full adder (FA) truth table. 

 

3) We utilize the simplified versions of the FA cell to 

propose several imprecise or approximate multi-bit 

adders that can be used as building blocks of DSP 
systems. To maintain a reasonable output quality, 

approximate FA cells used only in the least significant 

bits (LSBs). We particularly focus on adder structures 

that use FA cells as their basic building blocks.  

 

4) VOS is a very popular technique to get large 

improvements in power consumption. However, VOS 

will lead to delay failures in the most significant bits 

(MSBs). This might lead to large errors in 

corresponding outputs and severely mess up the 

output quality of the application. We use approximate 

FA cells only in the LSBs, while the MSBs use 

accurate FA cells. Therefore, at iso frequency, the 
errors introduced by VOS will be much higher, when 

compared to proposed approximate adders. Since 

truncation is a well-known technique to facilitate 

voltage scaling,. In general, our approach may be 

applied to any arithmetic circuit built with FAs.  

 

II. APPROXIMATE ADDERS 

In this section, we discuss different methodologies for 

designing approximate adders. Since the MA [23] is one 

of the widely used economical implementations of an FA 

[24], we use it as our basis for proposing different 

approximations of an FA cell. 
 

Approximation Strategies for the MA 

In this section, we explain step-by-step procedures for 

coming up with various approximate MA cells with fewer 

transistors. Removal of some series connected transistors 

will facilitate faster charging/discharging of node 

capacitances. Moreover, complexity reduction by removal 

of transistors also aids in reducing the αC term (switched 

capacitance) in the dynamic power expression Pdynamic = 

αCV2 DDf , whereα is the switching activity or average 

number of switching transitions per unit time and C is the 

load capacitance  being charged/discharged. This directly 
results in lower power dissipation. Area reduction is also 

achieved by this process. Now, let us discuss the 

conventional MA implementation followed by the 

proposed approximations used economical 

implementations of an FA [24], we use it as our basis for 

proposing different approximations of an FA cell. 
 

 
Fig. 1. Conventional MA. 

 
Fig. 2. MA approximation 1. 

 

 
Fig. 3. MA approximation 2. 
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Fig. 4. MA approximation 3. 

 

 
Fig. 5. MA approximation 4. 

 

1) Conventional MA: Fig. 1 shows the transistor-level 
schematic of a conventional MA [23], which is a 

popular way of implementing an FA. It consists of a 

total of 24 transistors. Since this implementation is 

not based on complementary CMOS logic, it provides 

a good opportunity to design an approximate version 

with removal of selected transistors. 

 

2) Approximation 1: In order to get an approximate MA 

with fewer transistors, we start to remove transistors 

from the conventional schematic one by one. 

However, we cannot do this in an arbitrary fashion. 

We need to make sure that any input combination of 

A,B and Cin does not result in short circuits or open 

circuits in the simplified schematic. Another 
important criterion is that the resulting simplification 

should introduce minimal errors in the FA truth table. 

A judicious selection of transistors to be removed 

(ensuring no open or short circuits) results in a 

schematic shown in Fig. 2, which we call 

approximation 1. Clearly, this schematic has eight 

fewer transistors compared to the conventional MA 

schematic. In this case, there is one error in Cout and 

two errors in Sum, as shown in Table I. A tick mark 

denotes a match with the corresponding accurate 

output and a cross denotes an error. 

 

3) Approximation 2: The truth table of an FA shows that 

Sum= Cout 1 for six out of eight cases, except for the 
input combinations A = 0,B = 0,Cin = 0 and A = 1,B 

= 1,Cin = 1. Now, in the conventional MA, Cout is 

computed in the first stage. Thus, an easy way to get a 

simplified schematic is to set Sum= Cout. However, 

we introduce a buffer stage after Cout (see Fig. 3) to 

implement the same functionality.  

 

The reason for this can be explained as follows. If we 

set Sum= Cout as it is in the conventional MA, the 

total capacitance at the Sum node would be a 

combination of four source–drain diffusion and two 

gate capacitances. This is a considerable increase 

compared to the conventional case or approximation 
1. Such a design would lead to a delay penalty in 

cases where two or more multi-bit approximate adders 

are connected in series, which is very common in DSP 

applications. Fig. 3 shows the schematic obtained 

using the above approach. We call this approximation 

 

 2. Here, Sum has only two errors, while Cout is 

correct for all cases, as shown in Table I. 

 

Table 1: Truth Table for Conventional Adder and Approximations 1 to 4 
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Fig 6. Layouts of Conventional MA and Approximation Cell 

 

Table 3 Experimental Results for one bit adder 

 
Power Consumption(

 w) 

Layout Area(

 m2 ) Delay(ps) 

Conventional MA 148 54*12 15 

Approximation 1 72.682 36*11 10 

Approximation 2 9.098 32*12 20 

Approximation 3 8.782 26*12 21 

Approximation 4 7.394 25*11 15 

 
Table 4 Experimental Results for eight bit booths multiplier 

 
Power(

mw) 
Delay(ps) 

No of Adders 

used in CLA 

Total No of 

Transistors used in 

CLA 

Layout Area for 

CLA       ( m2 

) 

Conventional MA 585.4 551.1 15 360 180 

Approximation1 584.9 551.08 15 248 124 

Approximation2 601.7 551.09 15 218 109 

Approximation3 592.9 551.27 15 176 88 

Approximation4 582.6 551.09 15 178 89 

 

 

Table 2 Choosing Approximation 5 

 
 

4) Approximation 3: Further simplification can be 

obtained by combining approximations 1 and 2. Note 

that this introduces one error in Cout and three errors 
in Sum, as shown in Table I. The corresponding 

simplified schematic is shown in Fig. 4. 

5) Approximation 4: A close observation of the FA truth 

table shows that Cout = A for six out of eight cases. 

Similarly, Cout = B for six out of eight cases. Since A 

and B are interchangeable, fourth approximation 

where we just use an inverter with input A to calculate 

Cout and Sum is calculated similar to approximation 

1. This introduces two errors in Cout and three errors 

in as shown in Table I. The corresponding simplified 

schematic is shown in Fig. 5. In all we consider Cout 

= A. Thus, we propose a Sum, using an inverter with 

Cout as input. 

6) Approximation 5: In approximation 4, we find that 

there are three errors in Sum. We extend this 
approximation by allowing one more error, i.e., four 

errors in Sum. We use the approximation Cout = A, as 

in approximation 4. If we want to make Sum 

independent of Cin, we have two choices, Sum= A 

and Sum= B. Thus, we have two alternatives for 

approximation 5, namely, Sum= A, Cout = A and 

Sum= B, Cout = A, which are shown in Table 2. The 

table shows which entries match with and differ from 

the corresponding accurate outputs (shown by tick 

marks and crosses). If we observe choice 1, we find 

that both Sum and Cout match with accurate outputs 

in only two out of eight cases. In choice 2, Sum and 
Cout match with accurate outputs in four out of eight 

cases. Therefore, to minimize errors both in Sum and 

Cout, we go for choice 2 as approximation 5. Our 

main thrust here is to ensure that for a particular input 

combination (A,B and Cin), ensuring correctness in 

Sum also makes Cout correct. Now consider the 

addition of two 20-b integers a[19 : 0] and b[19 : 0] 

using an RCA. Suppose we use approximate FAs for 

7 LSBs. Then, Cin[7] = Cout[6]. Note that Cout[6] is 

approximate. Applying this approximation to our 

present example, we find that carry propagation from 
bit 0 to bit 6 is entirely eliminated. In addition, the 
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circuitry needed to calculate Cout[0] to Cout[5] is also 

saved. To limit the output capacitance at Sum and 
Cout nodes, we implement approximation 5: Sum= B, 

Cout = A using buffers. 

 

Layouts of conventional MA and different approximations 

in IBM 90-nm technology are shown in Fig. 6. Layout 

area the conventional MA and different approximations 

are compared in Table III. Approximation 5 uses only 

buffers. The layout area of a single buffer is 6.77 μm2. 

 

7) Boots multiplier: Multiplication is a most commonly 

used operation in many computing systems. Intact 

multiplication is nothing but addition since, 
multiplicand adds to itself multiplier number of times 

gives the multiplication value between multiplier and 

multiplicand. But considering the fact that this kind of 

implementation really takes huge hardware resources 

and the circuit operates at utterly low speed. If we 

observe closely multiplication operation involves two 

steps one is producing partial products and adding 

these partial products. Thus, the speed of a multiplier 

hardly depends on how fast generate the partial 

products and how fast we can add them together. If 

the number of partial products to be generated is of 
less than it is indirectly means that we have achieved 

the speed in generating partial products. To speed up 

the addition among the partial products we need fast 

adder architectures. The high speed Booth multiplier 

is used for digital signal processing (DSP) 

applications such as for multimedia and 

communication systems. We designed and 

implemented a multiplier unit that can perform 

multiplication operation on both positive and negative 

for signed numbers. 

 

Fig 6.Chip Architecture 

 
 

Algorithm: The architecture consists of five parts: two’s 

complement Generator, Booth Encoder, Partial Product, 
Wallace tree and Carry Look-ahead Adder. In 

implementation of booths algorithm there are two operand 

multiplier and multiplicand.  

8)Wallace Tree Multiplier: To improving the speed of the 

parallel multiplier Wallace multiplier is used. Wallace 

introduced a very important iterative realization of parallel 

multiplier. Parallel multipliers can reduce the number of 

partial product rows to be added by half, thus reducing the 

size and enhance the speed of the tree. This advantage 

becomes more pronounced for multipliers of bigger than 

16 bits. In Wallace tree architecture, all the bits of all of 

the partial products in each column are added together by 
a set of counters in parallel without propagating any 

carries. Another set of counters then reduces this new 

matrix and so on, until a two-row matrix is generated. The 

most common counter used is the 3:2 counters which is a 

Full Adder. The final results are added using usually carry 

look ahead adder. A block diagram of 4 bit Wallace Tree 

multiplier is shown in below. As seen from the block 

diagram partial products are added in Wallace tree block. 

The result of these additions is the final product bits and 

sum and carry bits which are added in the final carry look 

ahead adder. 
 

Power consumption and booths multiplication output of:  

1. Conventional MA : 

 
 

2.  Approximation1: 

 
 

3.Approximation 2: 

 
 

4. Approximation 3: 
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5. Approximation 4:  

 
 

CONCLUSION 

In this paper, we proposed several imprecise or 

approximate adders that can be effectively utilized to trade 

off power and quality for error-resilient DSP systems. Our 

approach aimed to simplify the complexity of a 

conventional MA cell by reducing the number of 

transistors and also the load capacitances. When the errors 

introduced by these approximations were reflected at a 
high level in a typical DSP algorithm, the impact on output 

quality was very little. Note that our approach differed 

from previous approaches where errors were introduced 

due to VOS. A decrease in the number of series connected 

transistors helped in reducing the effective switched 

capacitance and achieving voltage scaling. We present a 8-

bit×8-bit multiplier capable of carrying signed operations 

on positive and negative operand. The proposed 

approximations are used for multiplier design and 

optimized in terms of delay, power consumption and area. 
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